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theory. Lattice dynamics in t he fourth-order 
approximation lead, under certain assumptions, 
to the Mie-Griineisen equation [Leibfried and 
Ludwig, 1961], and Thomsen [1970] derived 
an expansion of this equation into the domain 
of fini te strain . His equation thus describes 
both compressional and t hermal effects . It is 
written in terms of a particular Lagrangian 
strain and involves six adjustable parameters. 
Subsequently it has been shown (G. F. Davies, 
unpublished manuscript, 1972) that analogous 
equations can be deri ved in terms of other 
strains and t hat the resulting form of t he Mie­
Griineisen equation can be written in t he form 
of a co nventional fini te strain equation. 

In accord with these results, t he 3000 K 
isotherm will be represented in this study by 
the fourth-order Eulerian fini te strain equation 

P( V) = - 3Ko(1 - 2E)5f2 {E - !( Ko' - 4)E 2 

+ ! [KoKo" + Ko'(Ko' - 7) + -1..f!]E3) (3) 

where Ko is t he bulk modulus at zero pressure 
and 300oK, a prime denotes an isothermal 
pressure derivative, and 

E = HI - (V/ VO) -2f 3] (4) 

is t he Eulerian strain parameter . Neglecting 
the last term in (3) reduces it to t he familiar 
Birch-Murnaghan equation [e.g., Birch, 1952]. 

The part icular expression for y to be us~d 
here is derived (G. F . Davies, unpubli shed 
manuscript, 1972) by expanding to second 
order the squared eigenfrequencies of the lattice 
in terms of displacements of the atoms from 
their mean lattice posit ions and substituting the 
result in t he usual defini tion of y: 

l' 
dlnw 

d in V 

lattice potential energy to fourth order in terms 
of atomic displacements on which the fourth­
order theory of lattice dynamics is based [Leib­
fried and L udwig, 1961]. The quant ity w in 
(5 ) can be regarded as a characteristic eigen­
frequency of the lattice. 

The consta nts g and h in (5) are parameters 
to be determined. They are related to measured 
quantities by the following series of equations 
(G. F . Davies, unpublished manuscript, 1972). 

g = -61'0 (7) 

h g [3(: 1: ; t. a + g - 1 ] (8) 

l' = VaKT/ C. (9) 

(a In 1') 
a In V T 

(a In c.) 
1 + OT - Kr' - a In V T 

(10) 

OT = -1 / aKT I(aKT/ aT) p (11) 

Here C. is the specific heat at constant volume 
and the subscript T denotes isothermal deriva­
t ives. Equations 9 and 10 are thermodynamic 
ident ities [Bassett et 01., 1968] . 

An equation for Hugoniot pressure can be 
derived by combining the Mie-Griineisen equa­
t ion with t he Rankine-Hugoniot conservation 
equations. In this way t he Hugoniot pressure 
can be related to any other t hermodynamic 
locus, such as an isentrope or an isot herm. An 
equation relating the Hugoniot pressure to an 
isentrope has been given by Ahrens et 01 . [1969] . 
Another equation relating Hugoniot pressure to 
the isotherm of the stati c lattice has been given 
by Thomsen [1970] . This equation has been 
generalized to include t he effects of a phase 
change and initial porosity (G. F. Davies, un­
published manuscript, 1972) ; the result is 

(1 + e)(g + he) 

6(1 + ge + thi ) 
(
V' V V ) (5) Ph T - 2' - -:; = 4>(V) - 4>(Vo) 

Here e is another strain parameter defined as 

e = (V/ Vo/
f 3 

- 1 (6) 

The strain e is linea r in atomic displacements, 
so that a second-order expansion ill terms of e 
is identical to a second-order expansion in 
terms of atomic displacements. This result, in 
t urn, is consistent with the expansion of the 

+ V de/> _ U(Vo) + E, 
l' dV 

(12) 

where P, is the Hugoniot pressure, Yo' is the 
ini t ial density of the sample, Vo is t he zero 
pressure density of the phase in question, U 
is the thermal energy, E, is t he zero pressure 
phase t ransformation energy, and <p is t he po­
tential energy of the stati c lattice . The quan-
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tity <p can be related to the expansion of the 
isotherm (equation 3) through the constants g 
and h (P.. F. Davies, unpublished manuscript, 
1972) . 

To summarize, expressions for the 3000 K 
isotherm and for the Hugoniots are given by 
(3) and (12) in terms of the six parameters 
Vo, Ko, Ke', Ko", (I, and h. The only essentially 
new thing in this analysis is the equation for 
y (equation 5). It should be noted that this 
equation gives a volume dependence of y qualita­
tively similar to, for instance, (1) . In the pres­
ent application th~ volume dependence of y is 
constrained by the Hugoniot data, and so the 
quantitative differences between (1) and (5), 
for instance, will be absorbed by their param­
eters. Thus with (5) the value of 8T will be 
determined in this way (see equations 10 and 
11; all other quantities in (7)-(11) are con­
strained by other aspects of the data). Because 
8T is otherwise unknown, the only doubt re­
sulting from this procedure concerns the specific 
value of 8T • 

The specific heat at constant volume has been 
approximated in these calculations by the Debye 
model. A discussion of the inadequacy of the 
Debye model for a number of minerals has been 
given by Kieffer and Kamb [1972]. Their re­
Stuts indicate that, for the purposes of this dis­
cussion, the Debye model is not too inadequate 
for stishovite. It is less appropriate for coesite, 
but, in view of the other uncertainties of the 
coesite equation of state (see below) , it is an 
acceptable approx·imation. 

Hugoniot temperatures are calculated accord­
ing to a method given by Ahrens et al. [1969]. 
For this calculation the volume dependence of 
the Debye temperature () D is required. The 
Debye temperature is proportional to the Debye 
cutoff frequency. Thus, for consistency with the 
treatment of lattice dynamics discussed earlier, 
the square of () D may be expanded to second 
order in e. Thus 

EQUATIONS OF STATE 

General . The procedure used here to deter­
mine the equation of state was to calculate, 
according to the last section, all relevant 
quantities, such as Hugoniots, isotherms, bulk 
modulus, and so forth, and to adjust the equa-

tion-of-state parameters to obtain a weighted 
least-squares fit to the data. The weighting 
basically was done according to the estimated 
standard error of the data, but it was also ad­
justed in some cases, as will be seen, to prefer­
entially fit some of the data. 

Some general features of the silica Hugoniot 
data and a representative set of calculated 
Hugoniots and isotherms are illustrated in Fig­
ure 1. Most of the Hugoniot data radiate from 
one of two points: the coesite or sitishovite 
zero pressure densities . The apparent zero pres­
sure density of the data is the basi~ of the 
identification by Trunin et al. [1971b] of the 
Hugoniots of the two most porous silica samples 
as being in the coesite phase. This identification 
will be discussed subsequently; in the mean­
time the phase will be referred to as 'coesite.' 

The Hugoniots of successively more porous 
silica, which start at zero porosity, become 
successively steeper up to the initial density 
po' of 1.77 g/cm" whose Hugoniot is nearly 
vertical on this plot. The 1.55-g/cm' initial 
density Hugoniot data are at densities lower 
than but fairly close to the zero pressure 300 0 K 
stishovite density, whereas the 1.35- and 1.15-
g/cm' initial density Hugoniots are less steep 
and centered about the coesite density. The 
po' = 1.55 g/cm' Hugoniot may represent a 
mixture of 'coesite' and stishovite [Trunin et 
al., 1971b]. This point will be discussed further 
below. 

The calculated Hugoniots shown in Figure 1 
(stishovite case 2 and 'coesite' case 1, dis­
cussed below) reproduce these features fairly 
well. However, the coesite-stishovite transition 
is not predicted by these calculations. Thus 
stishovite Hugoniots corresponding to all seven 
initial porosities are shown. The three most 
porous Hugoniots are notable for having nega­
tive slopes; there is a critical initial density for 
which the Hugoniot is vertical. The two most 
porous Hugoniots are shown as dashed lines, 
since they clearly fail to represent the corre­
sponding data . The Po' .= 1.55 Hugoniot data ap­
proach but do not agree very well with the 
corresponding calculated stishovite curve shown 
in Figure 1. Only the two most porous 'coesite' 
Hugoniots are shown. The other Hugoniots will 
lie between these Hugoniots and the 300 0 K iso­
therm (shown as a short-dashed line) and clearly 
will not coincide with the corresponding data,. 
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